Featured Image

Marshaling artificial intelligence in the fight against Covid-19 | MIT News

Artificial intelligence could play a decisive role in stopping the Covid-19 pandemic. To give the technology a push, the MIT-IBM Watson AI Lab is funding 10 projects at MIT aimed at advancing AI’s transformative potential for society. The research will target the immediate public health and economic challenges of this moment. But it could have a lasting impact on how we evaluate and respond to risk long after the crisis has passed. The 10 research projects are highlighted below.

Early detection of sepsis in Covid-19 patients 

Sepsis is a deadly complication of Covid-19, the disease caused by the new coronavirus SARS-CoV-2. About 10 percent of Covid-19 patients get sick with sepsis within a week of showing symptoms, but only about half survive.

Identifying patients at risk for sepsis can lead to earlier, more aggressive treatment and a better chance of survival. Early detection can also help hospitals prioritize intensive-care resources for their sickest patients. In a project led by MIT Professor Daniela Rus, researchers will develop a machine learning system to analyze images of patients’ white blood cells for signs of an activated immune response against sepsis.

Designing proteins to block SARS-CoV-2

Proteins are the basic building blocks of life, and with AI, researchers can explore and manipulate their structures to address longstanding problems. Take perishable food: The MIT-IBM Watson AI Lab recently used AI to discover that a silk protein made by honeybees could double as a coating for quick-to-rot foods to extend their shelf life.

In a related project led by MIT professors Benedetto Marelli and Markus Buehler, researchers will enlist the protein-folding method used in their honeybee-silk discovery to try to defeat the new coronavirus. Their goal is to design proteins able to block the virus from binding to human cells, and to synthesize and test their unique protein creations in the lab.

Saving lives while restarting the U.S. economy

Some states are reopening for business even as questions remain about how to protect those most vulnerable to the coronavirus. In a project led by MIT professors Daron Acemoglu, Simon Johnson and Asu Ozdaglar will model the effects of targeted lockdowns on the economy and public health.

In a recent working paper co-authored by Acemoglu, Victor Chernozhukov, Ivan Werning, and Michael Whinston, MIT economists analyzed the relative risk of infection, hospitalization, and death for different age groups. When they compared uniform lockdown policies against those targeted to protect seniors, they found that a targeted approach could save more lives. Building on this work, researchers will consider how antigen tests and contact tracing apps can further reduce public health risks.

Which materials make the best face masks?

Massachusetts and six other states have ordered residents to wear face masks in public to limit the spread of coronavirus. But apart from the coveted N95 mask, which traps 95 percent of airborne particles 300 nanometers or larger, the effectiveness of many masks remains unclear due to a lack of standardized methods to evaluate them.

In a project led by MIT Associate Professor Lydia Bourouiba, researchers are developing a rigorous set of methods to measure how well homemade and medical-grade masks do at blocking the tiny droplets of saliva and mucus expelled during normal breathing, coughs, or sneezes. The researchers will test materials worn alone and together, and in a variety of configurations and environmental conditions. Their methods and measurements will determine how well materials protect mask wearers and the people around them.

Treating Covid-19 with repurposed drugs

As Covid-19’s global death toll mounts, researchers are racing to find a cure among already-approved drugs. Machine learning can expedite screening by letting researchers quickly predict if promising candidates can hit their target.

In a project led by MIT Assistant Professor Rafael Gomez-Bombarelli, researchers will represent molecules in three dimensions to see if this added spatial information can help to identify drugs most likely to be effective against the disease. They will use NASA’s Ames and U.S. Department of Energy’s NSERC supercomputers to further speed the screening process.

A privacy-first approach to automated contact tracing

Smartphone data can help limit the spread of Covid-19 by identifying people who have come into contact with someone infected with the virus, and thus may have caught the infection themselves. But automated contact tracing also carries serious privacy risks.

In collaboration with MIT Lincoln Laboratory and others, MIT researchers Ronald Rivest and Daniel Weitzner will use encrypted Bluetooth data to ensure personally identifiable information remains anonymous and secure.

Overcoming manufacturing and supply hurdles to provide global access to a coronavirus vaccine

A vaccine against SARS-CoV-2 would be a crucial turning point in the fight against Covid-19. Yet, its potential impact will be determined by the ability to rapidly and equitably distribute billions of doses globally. This is an unprecedented challenge in biomanufacturing. 

In a project led by MIT professors Anthony Sinskey and Stacy Springs, researchers will build data-driven statistical models to evaluate tradeoffs in scaling the manufacture and supply of vaccine candidates. Questions include how much production capacity will need to be added, the impact of centralized versus distributed operations, and how to design strategies for fair vaccine distribution. The goal is to give decision-makers the evidence needed to cost-effectively achieve global access.

Leveraging electronic medical records to find a treatment for Covid-19

Developed as a treatment for Ebola, the anti-viral drug remdesivir is now in clinical trials in the United States as a treatment for Covid-19. Similar efforts to repurpose already-approved drugs to treat or prevent the disease are underway.

In a project led by MIT professors Roy Welsch and Stan Finkelstein, researchers will use statistics, machine learning, and simulated clinical drug trials to find and test already-approved drugs as potential therapeutics against Covid-19. Researchers will sift through millions of electronic health records and medical claims for signals indicating that drugs used to fight chronic conditions like hypertension, diabetes, and gastric influx might also work against Covid-19 and other diseases.

Finding better ways to treat Covid-19 patients on ventilators 

Troubled breathing from acute respiratory distress syndrome is one of the complications that brings Covid-19 patients to the ICU. There, life-saving machines help patients breathe by mechanically pumping oxygen into the lungs. But even as towns and cities lower their Covid-19 infections through social distancing, there remains a national shortage of mechanical ventilators and serious health risks of ventilation itself.

In collaboration with IBM researchers Zach Shahn and Daby Sow, MIT researchers Li-Wei Lehman and Roger Mark will develop an AI tool to help doctors find better ventilator settings for Covid-19 patients and decide how long to keep them on a machine. Shortened ventilator use can limit lung damage while freeing up machines for others. To build their models, researchers will draw on data from intensive-care patients with acute respiratory distress syndrome, as well as Covid-19 patients at a local Boston hospital.

Returning to normal via targeted lockdowns, personalized treatments, and mass testing

In a few short months, Covid-19 has devastated towns and cities around the world. Researchers are now piecing together the data to understand how government policies can limit new infections and deaths and how targeted policies might protect the most vulnerable.

In a project led by MIT Professor Dimitris Bertsimas, researchers will study the effects of lockdowns and other measures meant to reduce new infections and deaths and prevent the health-care system from being swamped. In a second phase of the project, they will develop machine learning models to predict how vulnerable a given patient is to Covid-19, and what personalized treatments might be most effective. They will also develop an inexpensive, spectroscopy-based test for Covid-19 that can deliver results in minutes and pave the way for mass testing. The project will draw on clinical data from four hospitals in the United States and Europe, including Codogno Hospital, which reported Italy’s first infection.

Covid Abruzzo Basilicata Calabria Campania Emilia Romagna Friuli Venezia Giulia Lazio Liguria Lombardia Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trentino Alto Adige Umbria Valle d’Aosta Veneto Italia Agrigento Alessandria Ancona Aosta Arezzo Ascoli Piceno Asti Avellino Bari Barletta-Andria-Trani Belluno Benevento Bergamo Biella Bologna Bolzano Brescia Brindisi Cagliari Caltanissetta Campobasso Carbonia-Iglesias Caserta Catania Catanzaro Chieti Como Cosenza Cremona Crotone Cuneo Enna Fermo Ferrara Firenze Foggia Forlì-Cesena Frosinone Genova Gorizia Grosseto Imperia Isernia La Spezia L’Aquila Latina Lecce Lecco Livorno Lodi Lucca Macerata Mantova Massa-Carrara Matera Messina Milano Modena Monza e della Brianza Napoli Novara Nuoro Olbia-Tempio Oristano Padova Palermo Parma Pavia Perugia Pesaro e Urbino Pescara Piacenza Pisa Pistoia Pordenone Potenza Prato Ragusa Ravenna Reggio Calabria Reggio Emilia Rieti Rimini Roma Rovigo Salerno Medio Campidano Sassari Savona Siena Siracusa Sondrio Taranto Teramo Terni Torino Ogliastra Trapani Trento Treviso Trieste Udine Varese Venezia Verbano-Cusio-Ossola Vercelli Verona Vibo Valentia Vicenza Viterbo

Featured Image

Engineers put tens of thousands of artificial brain synapses on a single chip | MIT News

MIT engineers have designed a “brain-on-a-chip,” smaller than a piece of confetti, that is made from tens of thousands of artificial brain synapses known as memristors — silicon-based components that mimic the information-transmitting synapses in the human brain.

The researchers borrowed from principles of metallurgy to fabricate each memristor from alloys of silver and copper, along with silicon. When they ran the chip through several visual tasks, the chip was able to “remember” stored images and reproduce them many times over, in versions that were crisper and cleaner compared with existing memristor designs made with unalloyed elements.

Their results, published today in the journal Nature Nanotechnology, demonstrate a promising new memristor design for neuromorphic devices — electronics that are based on a new type of circuit that processes information in a way that mimics the brain’s neural architecture. Such brain-inspired circuits could be built into small, portable devices, and would carry out complex computational tasks that only today’s supercomputers can handle.

“So far, artificial synapse networks exist as software. We’re trying to build real neural network hardware for portable artificial intelligence systems,” says Jeehwan Kim, associate professor of mechanical engineering at MIT. “Imagine connecting a neuromorphic device to a camera on your car, and having it recognize lights and objects and make a decision immediately, without having to connect to the internet. We hope to use energy-efficient memristors to do those tasks on-site, in real-time.”

Wandering ions

Memristors, or memory transistors, are an essential element in neuromorphic computing. In a neuromorphic device, a memristor would serve as the transistor in a circuit, though its workings would more closely resemble a brain synapse — the junction between two neurons. The synapse receives signals from one neuron, in the form of ions, and sends a corresponding signal to the next neuron.

A transistor in a conventional circuit transmits information by switching between one of only two values, 0 and 1, and doing so only when the signal it receives, in the form of an electric current, is of a particular strength. In contrast, a memristor would work along a gradient, much like a synapse in the brain. The signal it produces would vary depending on the strength of the signal that it receives. This would enable a single memristor to have many values, and therefore carry out a far wider range of operations than binary transistors.

Like a brain synapse, a memristor would also be able to “remember” the value associated with a given current strength, and produce the exact same signal the next time it receives a similar current. This could ensure that the answer to a complex equation, or the visual classification of an object, is reliable — a feat that normally involves multiple transistors and capacitors.

Ultimately, scientists envision that memristors would require far less chip real estate than conventional transistors, enabling powerful, portable computing devices that do not rely on supercomputers, or even connections to the Internet.

Existing memristor designs, however, are limited in their performance. A single memristor is made of a positive and negative electrode, separated by a “switching medium,” or space between the electrodes. When a voltage is applied to one electrode, ions from that electrode flow through the medium, forming a “conduction channel” to the other electrode. The received ions make up the electrical signal that the memristor transmits through the circuit. The size of the ion channel (and the signal that the memristor ultimately produces) should be proportional to the strength of the stimulating voltage.

Kim says that existing memristor designs work pretty well in cases where voltage stimulates a large conduction channel, or a heavy flow of ions from one electrode to the other. But these designs are less reliable when memristors need to generate subtler signals, via thinner conduction channels.

The thinner a conduction channel, and the lighter the flow of ions from one electrode to the other, the harder it is for individual ions to stay together. Instead, they tend to wander from the group, disbanding within the medium. As a result, it’s difficult for the receiving electrode to reliably capture the same number of ions, and therefore transmit the same signal, when stimulated with a certain low range of current.

Borrowing from metallurgy

Kim and his colleagues found a way around this limitation by borrowing a technique from metallurgy, the science of melding metals into alloys and studying their combined properties.

“Traditionally, metallurgists try to add different atoms into a bulk matrix to strengthen materials, and we thought, why not tweak the atomic interactions in our memristor, and add some alloying element to control the movement of ions in our medium,” Kim says.

Engineers typically use silver as the material for a memristor’s positive electrode. Kim’s team looked through the literature to find an element that they could combine with silver to effectively hold silver ions together, while allowing them to flow quickly through to the other electrode.

The team landed on copper as the ideal alloying element, as it is able to bind both with silver, and with silicon.

“It acts as a sort of bridge, and stabilizes the silver-silicon interface,” Kim says.

To make memristors using their new alloy, the group first fabricated a negative electrode out of silicon, then made a positive electrode by depositing a slight amount of copper, followed by a layer of silver. They sandwiched the two electrodes around an amorphous silicon medium. In this way, they patterned a millimeter-square silicon chip with tens of thousands of memristors.

As a first test of the chip, they recreated a gray-scale image of the Captain America shield. They equated each pixel in the image to a corresponding memristor in the chip. They then modulated the conductance of each memristor that was relative in strength to the color in the corresponding pixel.

The chip produced the same crisp image of the shield, and was able to “remember” the image and reproduce it many times, compared with chips made of other materials.

The team also ran the chip through an image processing task, programming the memristors to alter an image, in this case of MIT’s Killian Court, in several specific ways, including sharpening and blurring the original image. Again, their design produced the reprogrammed images more reliably than existing memristor designs.

“We’re using artificial synapses to do real inference tests,” Kim says. “We would like to develop this technology further to have larger-scale arrays to do image recognition tasks. And some day, you might be able to carry around artificial brains to do these kinds of tasks, without connecting to supercomputers, the internet, or the cloud.”

This research was funded, in part, by the MIT Research Support Committee funds, the MIT-IBM Watson AI Lab, Samsung Global Research Laboratory, and the National Science Foundation.

Covid Abruzzo Basilicata Calabria Campania Emilia Romagna Friuli Venezia Giulia Lazio Liguria Lombardia Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trentino Alto Adige Umbria Valle d’Aosta Veneto Italia Agrigento Alessandria Ancona Aosta Arezzo Ascoli Piceno Asti Avellino Bari Barletta-Andria-Trani Belluno Benevento Bergamo Biella Bologna Bolzano Brescia Brindisi Cagliari Caltanissetta Campobasso Carbonia-Iglesias Caserta Catania Catanzaro Chieti Como Cosenza Cremona Crotone Cuneo Enna Fermo Ferrara Firenze Foggia Forlì-Cesena Frosinone Genova Gorizia Grosseto Imperia Isernia La Spezia L’Aquila Latina Lecce Lecco Livorno Lodi Lucca Macerata Mantova Massa-Carrara Matera Messina Milano Modena Monza e della Brianza Napoli Novara Nuoro Olbia-Tempio Oristano Padova Palermo Parma Pavia Perugia Pesaro e Urbino Pescara Piacenza Pisa Pistoia Pordenone Potenza Prato Ragusa Ravenna Reggio Calabria Reggio Emilia Rieti Rimini Roma Rovigo Salerno Medio Campidano Sassari Savona Siena Siracusa Sondrio Taranto Teramo Terni Torino Ogliastra Trapani Trento Treviso Trieste Udine Varese Venezia Verbano-Cusio-Ossola Vercelli Verona Vibo Valentia Vicenza Viterbo

Featured Image

Bringing the predictive power of artificial intelligence to health care | MIT News

news .mit.edu/sites/default/files/styles/news_article__cover_image__original/public/images/202006/MIT-closedloop-01.jpg?itok=zgeydqrL” />

An important aspect of treating patients with conditions like diabetes and heart disease is helping them stay healthy outside of the hospital — before they to return to the doctor’s office with further complications.

But reaching the most vulnerable patients at the right time often has more to do with probabilities than clinical assessments. Artificial intelligence (AI) has the potential to help clinicians tackle these types of problems, by analyzing large datasets to identify the patients that would benefit most from preventative measures. However, leveraging AI has often required health care organizations to hire their own data scientists or settle for one-size-fits-all solutions that aren’t optimized for their patients.

Now the startup ClosedLoop.ai is helping health care organizations tap into the power of AI with a flexible analytics solution that lets hospitals quickly plug their data into machine learning models and get actionable results.

The platform is being used to help hospitals determine which patients are most likely to miss appointments, acquire infections like sepsis, benefit from periodic check ups, and more. Health insurers, in turn, are using ClosedLoop to make population-level predictions around things like patient readmissions and the onset or progression of chronic diseases.

“We built a health care data science platform that can take in whatever data an organization has, quickly build models that are specific to [their patients], and deploy those models,” says ClosedLoop co-founder and Chief Technology Officer Dave DeCaprio ’94. “Being able to take somebody’s data the way it lives in their system and convert that into a model that can be readily used is still a problem that requires a lot of [health care] domain knowledge, and that’s a lot of what we bring to the table.”

In light of the Covid-19 pandemic, ClosedLoop has also created a model that helps organizations identify the most vulnerable people in their region and prepare for patient surges. The open source tool, called the C-19 Index, has been used to connect high-risk patients with local resources and helped health care systems create risk scores for tens of millions of people overall.

The index is just the latest way that ClosedLoop is accelerating the health care industry’s adoption of AI to improve patient health, a goal DeCaprio has worked toward for the better part of his career.

Designing a strategy

After working as a software engineer for several private companies through the internet boom of the early 2000s, DeCaprio was looking to make a career change when he came across a project focused on genome annotation at the Broad Institute of MIT and Harvard.

The project was DeCaprio’s first professional exposure to the power of artificial intelligence. It blossomed into a six year stint at the Broad, after which he continued exploring the intersection of big data and health care.

“After a year in health care, I realized it was going to be really hard to do anything else,” DeCaprio says. “I’m not going to be able to get excited about selling ads on the internet or anything like that. Once you start dealing with human health, that other stuff just feels insignificant.”

In the course of his work, DeCaprio began noticing problems with the ways machine learning and other statistical techniques were making their way into health care, notably in the fact that predictive models were being applied without regard for hospitals’ patient populations.

“Someone would say, ‘I know how to predict diabetes’ or ‘I know how to predict readmissions,’ and they’d sell a model,” DeCaprio says. “I knew that wasn’t going to work, because the reason readmissions happen in a low-income population of New York City is very different from the reason readmissions happen in a retirement community in Florida. The important thing wasn’t to build one magic model but to build a system that can quickly take somebody’s data and train a model that’s specific for their problems.”

With that approach in mind, DeCaprio joined forces with former co-worker and serial entrepreneur Andrew Eye, and started ClosedLoop in 2017. The startup’s first project involved creating models that predicted patient health outcomes for the Medical Home Network (MHN), a not-for-profit hospital collaboration focused on improving care for Medicaid recipients in Chicago.

As the founders created their modeling platform, they had to address many of the most common obstacles that have slowed health care’s adoption of AI solutions.

Often the first problems startups run into is making their algorithms work with each health care system’s data. Hospitals vary in the type of data they collect on patients and the way they store that information in their system. Hospitals even store the same types of data in vastly different ways.

DeCaprio credits his team’s knowledge of the health care space with helping them craft a solution that allows customers to upload raw data sets into ClosedLoop’s platform and create things like patient risk scores with a few clicks.

Another limitation of AI in health care has been the difficulty of understanding how models get to results. With ClosedLoop’s models, users can see the biggest factors contributing to each prediction, giving them more confidence in each output.

Overall, to become ingrained in customer’s operations, the founders knew their analytics platform needed to give simple, actionable insights. That has translated into a system that generates lists, risk scores, and rankings that care managers can use when deciding which interventions are most urgent for which patients.

“When someone walks into the hospital, it’s already too late [to avoid costly treatments] in many cases,” DeCaprio says. “Most of your best opportunities to lower the cost of care come by keeping them out of the hospital in the first place.”

Customers like health insurers also use ClosedLoop’s platform to predict broader trends in disease risk, emergency room over-utilization, and fraud.

Stepping up for Covid-19

In March, ClosedLoop began exploring ways its platform could help hospitals prepare for and respond to Covid-19. The efforts culminated in a company hackathon over the weekend of March 16. By Monday, ClosedLoop had an open source model on GitHub that assigned Covid-19 risk scores to Medicare patients. By that Friday, it had been used to make predictions on more than 2 million patients.

Today, the model works with all patients, not just those on Medicare, and it has been used to assess the vulnerability of communities around the country. Care organizations have used the model to project patient surges and help individuals at the highest risk understand what they can do to prevent infection.

“Some of it is just reaching out to people who are socially isolated to see if there’s something they can do,” DeCaprio says. “Someone who is 85 years old and shut in may not know there’s a community based organization that will deliver them groceries.”

For DeCaprio, bringing the predictive power of AI to health care has been a rewarding, if humbling, experience.

“The magnitude of the problems are so large that no matter what impact you have, you don’t feel like you’ve moved the needle enough,” he says. “At the same time, every time an organization says, ‘This is the primary tool our care managers have been using to figure out who to reach out to,’ it feels great.”

Covid Abruzzo Basilicata Calabria Campania Emilia Romagna Friuli Venezia Giulia Lazio Liguria Lombardia Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trentino Alto Adige Umbria Valle d’Aosta Veneto Italia Agrigento Alessandria Ancona Aosta Arezzo Ascoli Piceno Asti Avellino Bari Barletta-Andria-Trani Belluno Benevento Bergamo Biella Bologna Bolzano Brescia Brindisi Cagliari Caltanissetta Campobasso Carbonia-Iglesias Caserta Catania Catanzaro Chieti Como Cosenza Cremona Crotone Cuneo Enna Fermo Ferrara Firenze Foggia Forlì-Cesena Frosinone Genova Gorizia Grosseto Imperia Isernia La Spezia L’Aquila Latina Lecce Lecco Livorno Lodi Lucca Macerata Mantova Massa-Carrara Matera Messina Milano Modena Monza e della Brianza Napoli Novara Nuoro Olbia-Tempio Oristano Padova Palermo Parma Pavia Perugia Pesaro e Urbino Pescara Piacenza Pisa Pistoia Pordenone Potenza Prato Ragusa Ravenna Reggio Calabria Reggio Emilia Rieti Rimini Roma Rovigo Salerno Medio Campidano Sassari Savona Siena Siracusa Sondrio Taranto Teramo Terni Torino Ogliastra Trapani Trento Treviso Trieste Udine Varese Venezia Verbano-Cusio-Ossola Vercelli Verona Vibo Valentia Vicenza Viterbo

Recent Posts

Archives