Featured Image

Bringing the predictive power of artificial intelligence to health care | MIT News

news .mit.edu/sites/default/files/styles/news_article__cover_image__original/public/images/202006/MIT-closedloop-01.jpg?itok=zgeydqrL” />

An important aspect of treating patients with conditions like diabetes and heart disease is helping them stay healthy outside of the hospital — before they to return to the doctor’s office with further complications.

But reaching the most vulnerable patients at the right time often has more to do with probabilities than clinical assessments. Artificial intelligence (AI) has the potential to help clinicians tackle these types of problems, by analyzing large datasets to identify the patients that would benefit most from preventative measures. However, leveraging AI has often required health care organizations to hire their own data scientists or settle for one-size-fits-all solutions that aren’t optimized for their patients.

Now the startup ClosedLoop.ai is helping health care organizations tap into the power of AI with a flexible analytics solution that lets hospitals quickly plug their data into machine learning models and get actionable results.

The platform is being used to help hospitals determine which patients are most likely to miss appointments, acquire infections like sepsis, benefit from periodic check ups, and more. Health insurers, in turn, are using ClosedLoop to make population-level predictions around things like patient readmissions and the onset or progression of chronic diseases.

“We built a health care data science platform that can take in whatever data an organization has, quickly build models that are specific to [their patients], and deploy those models,” says ClosedLoop co-founder and Chief Technology Officer Dave DeCaprio ’94. “Being able to take somebody’s data the way it lives in their system and convert that into a model that can be readily used is still a problem that requires a lot of [health care] domain knowledge, and that’s a lot of what we bring to the table.”

In light of the Covid-19 pandemic, ClosedLoop has also created a model that helps organizations identify the most vulnerable people in their region and prepare for patient surges. The open source tool, called the C-19 Index, has been used to connect high-risk patients with local resources and helped health care systems create risk scores for tens of millions of people overall.

The index is just the latest way that ClosedLoop is accelerating the health care industry’s adoption of AI to improve patient health, a goal DeCaprio has worked toward for the better part of his career.

Designing a strategy

After working as a software engineer for several private companies through the internet boom of the early 2000s, DeCaprio was looking to make a career change when he came across a project focused on genome annotation at the Broad Institute of MIT and Harvard.

The project was DeCaprio’s first professional exposure to the power of artificial intelligence. It blossomed into a six year stint at the Broad, after which he continued exploring the intersection of big data and health care.

“After a year in health care, I realized it was going to be really hard to do anything else,” DeCaprio says. “I’m not going to be able to get excited about selling ads on the internet or anything like that. Once you start dealing with human health, that other stuff just feels insignificant.”

In the course of his work, DeCaprio began noticing problems with the ways machine learning and other statistical techniques were making their way into health care, notably in the fact that predictive models were being applied without regard for hospitals’ patient populations.

“Someone would say, ‘I know how to predict diabetes’ or ‘I know how to predict readmissions,’ and they’d sell a model,” DeCaprio says. “I knew that wasn’t going to work, because the reason readmissions happen in a low-income population of New York City is very different from the reason readmissions happen in a retirement community in Florida. The important thing wasn’t to build one magic model but to build a system that can quickly take somebody’s data and train a model that’s specific for their problems.”

With that approach in mind, DeCaprio joined forces with former co-worker and serial entrepreneur Andrew Eye, and started ClosedLoop in 2017. The startup’s first project involved creating models that predicted patient health outcomes for the Medical Home Network (MHN), a not-for-profit hospital collaboration focused on improving care for Medicaid recipients in Chicago.

As the founders created their modeling platform, they had to address many of the most common obstacles that have slowed health care’s adoption of AI solutions.

Often the first problems startups run into is making their algorithms work with each health care system’s data. Hospitals vary in the type of data they collect on patients and the way they store that information in their system. Hospitals even store the same types of data in vastly different ways.

DeCaprio credits his team’s knowledge of the health care space with helping them craft a solution that allows customers to upload raw data sets into ClosedLoop’s platform and create things like patient risk scores with a few clicks.

Another limitation of AI in health care has been the difficulty of understanding how models get to results. With ClosedLoop’s models, users can see the biggest factors contributing to each prediction, giving them more confidence in each output.

Overall, to become ingrained in customer’s operations, the founders knew their analytics platform needed to give simple, actionable insights. That has translated into a system that generates lists, risk scores, and rankings that care managers can use when deciding which interventions are most urgent for which patients.

“When someone walks into the hospital, it’s already too late [to avoid costly treatments] in many cases,” DeCaprio says. “Most of your best opportunities to lower the cost of care come by keeping them out of the hospital in the first place.”

Customers like health insurers also use ClosedLoop’s platform to predict broader trends in disease risk, emergency room over-utilization, and fraud.

Stepping up for Covid-19

In March, ClosedLoop began exploring ways its platform could help hospitals prepare for and respond to Covid-19. The efforts culminated in a company hackathon over the weekend of March 16. By Monday, ClosedLoop had an open source model on GitHub that assigned Covid-19 risk scores to Medicare patients. By that Friday, it had been used to make predictions on more than 2 million patients.

Today, the model works with all patients, not just those on Medicare, and it has been used to assess the vulnerability of communities around the country. Care organizations have used the model to project patient surges and help individuals at the highest risk understand what they can do to prevent infection.

“Some of it is just reaching out to people who are socially isolated to see if there’s something they can do,” DeCaprio says. “Someone who is 85 years old and shut in may not know there’s a community based organization that will deliver them groceries.”

For DeCaprio, bringing the predictive power of AI to health care has been a rewarding, if humbling, experience.

“The magnitude of the problems are so large that no matter what impact you have, you don’t feel like you’ve moved the needle enough,” he says. “At the same time, every time an organization says, ‘This is the primary tool our care managers have been using to figure out who to reach out to,’ it feels great.”

Covid Abruzzo Basilicata Calabria Campania Emilia Romagna Friuli Venezia Giulia Lazio Liguria Lombardia Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trentino Alto Adige Umbria Valle d’Aosta Veneto Italia Agrigento Alessandria Ancona Aosta Arezzo Ascoli Piceno Asti Avellino Bari Barletta-Andria-Trani Belluno Benevento Bergamo Biella Bologna Bolzano Brescia Brindisi Cagliari Caltanissetta Campobasso Carbonia-Iglesias Caserta Catania Catanzaro Chieti Como Cosenza Cremona Crotone Cuneo Enna Fermo Ferrara Firenze Foggia Forlì-Cesena Frosinone Genova Gorizia Grosseto Imperia Isernia La Spezia L’Aquila Latina Lecce Lecco Livorno Lodi Lucca Macerata Mantova Massa-Carrara Matera Messina Milano Modena Monza e della Brianza Napoli Novara Nuoro Olbia-Tempio Oristano Padova Palermo Parma Pavia Perugia Pesaro e Urbino Pescara Piacenza Pisa Pistoia Pordenone Potenza Prato Ragusa Ravenna Reggio Calabria Reggio Emilia Rieti Rimini Roma Rovigo Salerno Medio Campidano Sassari Savona Siena Siracusa Sondrio Taranto Teramo Terni Torino Ogliastra Trapani Trento Treviso Trieste Udine Varese Venezia Verbano-Cusio-Ossola Vercelli Verona Vibo Valentia Vicenza Viterbo

Featured Image

Improving global health equity by helping clinics do more with less | MIT News

news .mit.edu/sites/default/files/styles/news_article__cover_image__original/public/images/202006/MIT-Macro-Eyes-01.jpg?itok=LE61b_x_” />

More children are being vaccinated around the world today than ever before, and the prevalence of many vaccine-preventable diseases has dropped over the last decade. Despite these encouraging signs, however, the availability of essential vaccines has stagnated globally in recent years, according the World Health Organization.

One problem, particularly in low-resource settings, is the difficulty of predicting how many children will show up for vaccinations at each health clinic. This leads to vaccine shortages, leaving children without critical immunizations, or to surpluses that can’t be used.

The startup macro-eyes is seeking to solve that problem with a vaccine forecasting tool that leverages a unique combination of real-time data sources, including new insights from front-line health workers. The company says the tool, named the Connected Health AI Network (CHAIN), was able to reduce vaccine wastage by 96 percent across three regions of Tanzania. Now it is working to scale that success across Tanzania and Mozambique.

“Health care is complex, and to be invited to the table, you need to deal with missing data,” says macro-eyes Chief Executive Officer Benjamin Fels, who co-founded the company with Suvrit Sra, the Esther and Harold E. Edgerton Career Development Associate Professor at MIT. “If your system needs age, gender, and weight to make predictions, but for one population you don’t have weight or age, you can’t just say, ‘This system doesn’t work.’ Our feeling is it has to be able to work in any setting.”

The company’s approach to prediction is already the basis for another product, the patient scheduling platform Sibyl, which has analyzed over 6 million hospital appointments and reduced wait times by more than 75 percent at one of the largest heart hospitals in the U.S. Sibyl’s predictions work as part of CHAIN’s broader forecasts.

Both products represent steps toward macro-eyes’ larger goal of transforming health care through artificial intelligence. And by getting their solutions to work in the regions with the least amount of data, they’re also advancing the field of AI.

“The state of the art in machine learning will result from confronting fundamental challenges in the most difficult environments in the world,” Fels says. “Engage where the problems are hardest, and AI too will benefit: [It will become] smarter, faster, cheaper, and more resilient.”

Defining an approach

Sra and Fels first met about 10 years ago when Fels was working as an algorithmic trader for a hedge fund and Sra was a visiting faculty member at the University of California at Berkeley. The pair’s experience crunching numbers in different industries alerted them to a shortcoming in health care.

“A question that became an obsession to me was, ‘Why were financial markets almost entirely determined by machines — by algorithms — and health care the world over is probably the least algorithmic part of anybody’s life?’” Fels recalls. “Why is health care not more data-driven?”

Around 2013, the co-founders began building machine-learning algorithms that measured similarities between patients to better inform treatment plans at Stanford School of Medicine and another large academic medical center in New York. It was during that early work that the founders laid the foundation of the company’s approach.

“There are themes we established at Stanford that remain today,” Fels says. “One is [building systems with] humans in the loop: We’re not just learning from the data, we’re also learning from the experts. The other is multidimensionality. We’re not just looking at one type of data; we’re looking at 10 or 15 types, [including] images, time series, information about medication, dosage, financial information, how much it costs the patient or hospital.”

Around the time the founders began working with Stanford, Sra joined MIT’s Laboratory for Information and Decision Systems (LIDS) as a principal research scientist. He would go on to become a faculty member in the Department of Electrical Engineering and Computer Science and MIT’s Institute for Data, Systems, and Society (IDSS). The mission of IDSS, to advance fields including data science and to use those advances to improve society, aligned well with Sra’s mission at macro-eyes.

“Because of that focus [on impact] within IDSS, I find it my focus to try to do AI for social good,’ Sra says. “The true judgment of success is how many people did we help? How could we improve access to care for people, wherever they may be?”

In 2017, macro-eyes received a small grant from the Bill and Melinda Gates Foundation to explore the possibility of using data from front-line health workers to build a predictive supply chain for vaccines. It was the beginning of a relationship with the Gates Foundation that has steadily expanded as the company has reached new milestones, from building accurate vaccine utilization models in Tanzania and Mozambique to integrating with supply chains to make vaccine supplies more proactive. To help with the latter mission, Prashant Yadav recently joined the board of directors; Yadav worked as a professor of supply chain management with the MIT-Zaragoza International Logistics Program for seven years and is now a senior fellow at the Center for Global Development, a nonprofit thinktank.

In conjunction with their work on CHAIN, the company has deployed another product, Sibyl, which uses machine learning to determine when patients are most likely to show up for appointments, to help front-desk workers at health clinics build schedules. Fels says the system has allowed hospitals to improve the efficiency of their operations so much they’ve reduced the average time patients wait to see a doctor from 55 days to 13 days.

As a part of CHAIN, Sibyl similarly uses a range of data points to optimize schedules, allowing it to accurately predict behavior in environments where other machine learning models might struggle.

The founders are also exploring ways to apply that approach to help direct Covid-19 patients to health clinics with sufficient capacity. That work is being developed with Sierra Leone Chief Innovation Officer David Sengeh SM ’12 PhD ’16.

Pushing frontiers

Building solutions for some of the most underdeveloped health care systems in the world might seem like a difficult way for a young company to establish itself, but the approach is an extension of macro-eyes’ founding mission of building health care solutions that can benefit people around the world equally.

“As an organization, we can never assume data will be waiting for us,” Fels says. “We’ve learned that we need to think strategically and be thoughtful about how to access or generate the data we need to fulfill our mandate: Make the delivery of health care predictive, everywhere.”

The approach is also a good way to explore innovations in mathematical fields the founders have spent their careers working in.

“Necessity is absolutely the mother of invention,” Sra says. “This is innovation driven by need.”

And going forward, the company’s work in difficult environments should only make scaling easier.

“We think every day about how to make our technology more rapidly deployable, more generalizable, more highly scalable,” Sra says. “How do we get to the immense power of bringing true machine learning to the world’s most important problems without first spending decades and billions of dollars in building digital infrastructure? How do we leap into the future?”

Covid Abruzzo Basilicata Calabria Campania Emilia Romagna Friuli Venezia Giulia Lazio Liguria Lombardia Marche Molise Piemonte Puglia Sardegna Sicilia Toscana Trentino Alto Adige Umbria Valle d’Aosta Veneto Italia Agrigento Alessandria Ancona Aosta Arezzo Ascoli Piceno Asti Avellino Bari Barletta-Andria-Trani Belluno Benevento Bergamo Biella Bologna Bolzano Brescia Brindisi Cagliari Caltanissetta Campobasso Carbonia-Iglesias Caserta Catania Catanzaro Chieti Como Cosenza Cremona Crotone Cuneo Enna Fermo Ferrara Firenze Foggia Forlì-Cesena Frosinone Genova Gorizia Grosseto Imperia Isernia La Spezia L’Aquila Latina Lecce Lecco Livorno Lodi Lucca Macerata Mantova Massa-Carrara Matera Messina Milano Modena Monza e della Brianza Napoli Novara Nuoro Olbia-Tempio Oristano Padova Palermo Parma Pavia Perugia Pesaro e Urbino Pescara Piacenza Pisa Pistoia Pordenone Potenza Prato Ragusa Ravenna Reggio Calabria Reggio Emilia Rieti Rimini Roma Rovigo Salerno Medio Campidano Sassari Savona Siena Siracusa Sondrio Taranto Teramo Terni Torino Ogliastra Trapani Trento Treviso Trieste Udine Varese Venezia Verbano-Cusio-Ossola Vercelli Verona Vibo Valentia Vicenza Viterbo

Recent Posts

Archives